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Objectives and Findings

• Model uncertainty on the risk assessment of the sum of d
dependent risks (portfolio).

I Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of a portfolio?

• A non-parametric method based on the data at hand.

• Analytical expressions for the maximum and minimum

• Implications:

I Current VaR based regulation is subject to high model risk,
even if one knows the multivariate distribution almost
completely.

I We can identify for which risk measures it is meaningful to
develop accurate multivariate models.
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Model Risk

1 Goal: Assess the risk of a portfolio sum S =
∑d

i=1 Xi .

2 Choose a risk measure ρ(·): variance, Value-at-Risk...

3 “Fit” a multivariate distribution for (X1,X2, ...,Xd) and
compute ρ(S)

4 How about model risk? How wrong can we be?

ρ+F := sup

{
ρ

(
d∑

i=1

Xi

)}
, ρ−F := inf

{
ρ

(
d∑

i=1

Xi

)}

where the bounds are taken over all other (joint distributions of)
random vectors (X1,X2, ...,Xd) that “agree” with the available
information F
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Assessing Model Risk on Dependence with d Risks

I Marginals known and dependence fully unknown

I A challenging problem in d > 3 dimensions

• Puccetti and Rüschendorf (2012): algorithm (RA) useful to
approximate the minimum variance.

• Embrechts, Puccetti, Rüschendorf (2013): algorithm (RA) to
find bounds on VaR

I Issues
• bounds are generally very wide
• ignore all information on dependence.

I Our answer:
• We incorporate in a natural way dependence information.
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Rearrangement Algorithm

N = 4 observations of d = 3 variables: X1, X2, X3

A New Approach to Assessing Model Risk
in High Dimensions

Carole Bernard∗ and Steven Vanduffel†‡

July 14, 2014

M =




1 1 2
0 6 3
4 0 0
6 3 4


 SN =




4
9
4
13


 (1)

Maximum variance sum

X1 + X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0


 SN =




16
9
3
0




(2)

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0

becomes




0 6 4
1 3 2
4 1 1
6 0 0




(3)

New set...

↓ X1 + X3


0 6 4
1 3 2
4 1 1
6 0 0




4
3
5
6

becomes




0 3 4
1 6 2
4 1 1
6 0 0




(4)

New set...
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Each column: marginal distribution
Interaction among columns: dependence among the risks
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Same marginals, different dependence ⇒ Effect on the sum!
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Aggregate Risk with Maximum Variance

comonotonic scenario
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Rearrangement Algorithm: Sum with Minimum Variance

minimum variance with d = 2 risks X1 and X2

Antimonotonicity: var(Xa
1 + X2) 6 var(X1 + X2)

How about in d dimensions?

Use of the rearrangement algorithm on the original matrix M.

Aggregate Risk with Minimum Variance

I Columns of M are rearranged such that they become
anti-monotonic with the sum of all other columns.

∀k ∈ {1, 2, ..., d},Xa
k antimonotonic with

∑

j 6=k

Xj

I After each step, var
(

Xa
k +

∑
j 6=k Xj

)
6 var

(
Xk +

∑
j 6=k Xj

)

where Xa
k is antimonotonic with

∑
j 6=k Xj
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Aggregate risk with minimum variance
Step 1: First column
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Aggregate risk with minimum variance
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The minimum variance of the sum is equal to 0! (ideal case of a
constant sum (complete mixability, see Wang and Wang (2011))
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Bounds on variance

Analytical Bounds on Standard Deviation

Consider d risks Xi with standard deviation σi

0 6 std(X1 + X2 + ...+ Xd) 6 σ1 + σ2 + ...+ σd

Example with 20 normal N(0,1)

0 6 std(X1 + X2 + ...+ X20) 6 20

and in this case, both bounds are sharp and too wide for practical
use!
Our idea: Incorporate information on dependence.
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Illustration with 2 risks with marginals N(0,1)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

X
1

X
2
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Illustration with 2 risks with marginals N(0,1)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

X
1

X
2

Assumption: Independence on F =
2⋂

k=1

{qβ 6 Xk 6 q1−β}
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Our assumptions on the cdf of (X1,X2, ...,Xd)

F ⊂ Rd (“trusted” or “fixed” area)
U =Rd\F (“untrusted”).
We assume that we know:

(i) the marginal distribution Fi of Xi on R for i = 1, 2, ..., d ,

(ii) the distribution of (X1,X2, ...,Xd) | {(X1,X2, ...,Xd) ∈ F}.
(iii) P ((X1,X2, ...,Xd) ∈ F)

I When only marginals are known: U = Rd and F = ∅.
I Our Goal: Find bounds on ρ(S) := ρ(X1 + ...+ Xd) when

(X1, ...,Xd) satisfy (i), (ii) and (iii).

Carole Bernard A new approach to assessing model risk in high dimensions 14
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Example:

N = 8 observations, d = 3 dimensions
and 3 observations trusted (`f = 3, pf = 3/8)

as trustworthy than the initial one (note indeed that we do not know the dependence be-
tween the Xi, conditionally on (X1, X2, ..., Xd) ∈ U). Without loss of generality, we can
thus always assume that the matrix UN depicts a comonotonic dependence (in each column,
the values are sorted in decreasing order, that is such that xm1k � xm2k � ... � xm�uk

for all k = 1, 2, ..., d). Finally, for FN (and thus also for the corresponding part of XN )
we can assume that the �f observations (xij1, xij2...xijd) appear in such a way that for the
sums of the components, ie, sj := xij1 + xij2 + ... + xijd ( j = 1, 2, ..., �f) it holds that
s1 �s2 �...� s�f .

From now on, without any loss of generality, the observed data points are reported in
the following matrix M

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi11 xi12 ... xi1d

xi21 xi22 ... xi2d

...
...

...
...

xi�f 1 xi�f 2 ... xi�f d

xm11 xm12 ... xm1d

xm21 xm22 ... xm2d

...
...

...
...

xm�u1 xm�u2 ... xm�ud

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where the grey area reflects FN and the white area reflects UN . The corresponding vec-
tors Sf

N and Su
N consisting of sums of the components for each observation in the trusted

(respectively untrusted) part:

[
Sf
N

Su
N

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1
s2
...

s�f
s̃1 := xm11 + xm12 + ...+ xm1d

s̃2 := xm21 + xm22 + ...+ xm2d

...
s̃�u := xm�u1 + xm�u2 + ...+ xm�ud

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

While s1 �s2 �...� s�f are trusted, the sums s̃i change when varying the choice of depen-
dence in UN . In fact, the set {i1, ..., i�f } can be seen as the collection of states (scenarios)
in which the corresponding observations are trusted whereas the set {m1, ...,m�u} provides
the states in which there is doubt on the dependence structure.

We now provide a simple example of this setup for pedagogical purpose. It will be used
throughout the paper to illustrate each algorithm that we propose. This toy example is not
meant to represent a realistic set of observations as in true applications, there is a large
number of observations (here N = 8) and possibly a large number of variables (here d = 3).
The 8 observations are given as follows with 3 observations trusted (�f = 3), which appear
in the grey area of the matrix.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
1 1 1
0 3 2
0 2 1
2 4 2
3 0 1
1 1 2
4 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8
3
5
3
8
4
4
9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

15
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Example: N = 8, d = 3 with 3 observations trusted (`f = 3)

Maximum variance:

Without loss of generality we can then consider for further analysis the following matrix
M and the vectors of sums Sf

N and Su
N as follows.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
2 4 2
0 2 1
4 3 3
3 2 2
1 1 2
1 1 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Sf
N =

⎡
⎣

8
8
3

⎤
⎦ , Su

N =

⎡
⎢⎢⎢⎢⎣

10
7
4
3
1

⎤
⎥⎥⎥⎥⎦

(19)

Finally, with some abuse of notation (completing by 0 so that Sf
N and Su

N take 8 values)
one also has the following representation of SN ,

SN = ISf
N + (1− I)Su

N (20)

where I =1 if if (xi1, xi2...xid) ∈ FN (i = 1, 2, ..., N). In fact, Sf
N can be readily seen as the

sampled counterpart of the T that we used before (see Definition 4 and Proposition 2.9)

whereas Su
N is a comonotonic sum and corresponds to the sampled version of

∑d
i=1 Zi. In

this paper, we aim at finding worst case dependences allowing for a robust risk assessment
of the portfolio sum S (SN ). This amounts to rearranging the outcomes in the columns of
the untrusted part UN such that the risk measure at hand for SN becomes maximized (resp.
minimized).

3.3 Bounds on standard deviation

From Proposition 2.2 it is clear that in order to maximize the variance of SN one needs a
comonotonic scenario on UN . However, we have initialized a comonotonic structure already
(without loss of generality) and the corresponding values of the sums are exactly the values
s̃i (i = 1, 2, ..., �u) reported for Su

N in (17)). The upper bound on variance is then computed
as

1

N

⎛
⎝

�f∑

i=1

(si − s̄)2 +

�u∑

i=1

(s̃i − s̄)2

⎞
⎠ (21)

where the average sum s̄ is given by

s̄ =
1

N

N∑

i=1

d∑

j=1

xij =
1

N

⎛
⎝

�f∑

i=1

si +

�u∑

i=1

s̃i

⎞
⎠ (22)

To achieve the minimum variance bound found in Proposition 2.2, the values of Su
N must be

as close as possible to each other, ideally Su
N must be constant. In this respect the concept

of complete mixability appears as a theoretical device. “Complete mixability” refers to
the dependence structure which makes the sum Su

N constant (Wang and Wang (2011)).
To do so, in practice, we apply the rearrangement algorithm of Embrechts, Puccetti, and
Rüschendorf (2013) on the matrix UN (untrusted part) to be as close as possible to the
complete mixability condition. For completeness, the algorithm is presented in Appendix B
of this paper. Denote by s̃mi the corresponding values of the sums of Su

N after applying the
RA. We then compute the minimum variance as follows

1

N

⎛
⎝

�f∑

i=1

(si − s̄)2 +

�u∑

i=1

(s̃mi − s̄)2

⎞
⎠ (23)
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Minimum variance:

where s̄ is computed as in (22).

We illustrate the upper and lower bounds (21) and (23) for the variance derived above
with the matrix M of observations given in (19). We then use the comonotonic structure

for the untrusted part of the matrix M and compute the vectors of sums Sf
N and Su

N as
defined above in (19). The average sum is s̄ = 5.5. The maximum variance is equal to

1

8

(
3∑

i=1

(si − s̄)2 +

5∑

i=1

(s̃ci − s̄)2

)
≈ 8.75

For the lower bound, we apply the RA on UN and we obtain

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
2 4 2
0 2 1
1 1 3
0 3 2
1 2 2
3 1 1
4 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Sf
N =

⎡
⎣

8
8
3

⎤
⎦ , Su

N =

⎡
⎢⎢⎢⎢⎣

5
5
5
5
5

⎤
⎥⎥⎥⎥⎦

(24)

With an average sum s̄ = 5.5, the minimum variance can be calculated as

1

8

(
3∑

i=1

(si − s̄)2 +

5∑

i=1

(s̃mi − s̄)2

)
≈ 2.5

3.4 Bounds on TVaR

Assume that we want the TVaR at probability level p so that for ease of exposition

k := N(1− p) (25)

where k is integer. Similarly to the case of maximizing the variance it follows from Proposi-
tion 2.4, that in order to obtain the maximum TVaR one needs a comonotonic scenario on
UN . Hence, we just need to select the k highest values from Sf

N and Su
N as computed in (17).

Let us label these values by s∗1,s
∗
2,...,s

∗
k (ranked in decreasing order) and we can then easily

compute the maximum TVaR at probability level p. Also the minimum TVaR is obtained
similarly as the minimum variance. First apply the RA on the untrusted part UN to get
the variance on the (new) sum Su

N as small as possible. Then select the k highest values

out of Sf
N and Su

N , say: s∗1,s
∗
2,...,s

∗
k (ranked in decreasing order) and compute the minimum

TVaR.

Let us consider the previous example again. Let us choose p = 5/8, so that k = 3.
The highest k = 3 values are 8, 8 and 10 and the maximum TVaR is then 26/3 (≈ 8.67).
After application of the RA we obtain (24) for Su

N and thus the highest 3 outcomes that we

observe for Su
N and Sf

N are 8, 8 and 5. Hence, the minimum TVaR is 21/3 = 7.

3.5 Bounds on VaR

To compute the maximum VaR, we present an algorithm that can be applied directly on the
matrix M of the observed data, and thus leads to non-parametric bounds on VaR. Recall
that the first �f rows of the matrix M correspond to FN whereas �u denotes the number

of rows of UN (N = �f + �u). In the algorithm, we also make use of Sf
N and Su

N that we
consider as random variables. To compute the VaR at probability level p, we define

k := N(1− p) (26)

17
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Example d = 20 risks N(0,1)

I (X1, ...,X20) independent N(0,1) on

F := [qβ, q1−β]d ⊂ Rd pf = P ((X1, ...,X20) ∈ F)

(for some β 6 50%) where qγ : γ-quantile of N(0,1)

I β = 0%: no uncertainty (20 independent N(0,1))

I β = 50%: full uncertainty

U = ∅ pf ≈ 98% pf ≈ 82% U = Rd

F = [qβ , q1−β]d β = 0% β = 0.05% β = 0.5% β = 50%
ρ = 0 4.47 (4.4 , 5.65) (3.89 , 10.6) (0 , 20)

Model risk on the volatility of a portfolio is reduced a lot by
incorporating information on dependence!

Carole Bernard A new approach to assessing model risk in high dimensions 17
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Bounds on Value-at-Risk

Part 1 works for all risk measures that satisfy convex order... But
not for Value-at-Risk.

I VaRq is not maximized for the comonotonic scenario:

Sc = X c
1 + X c

2 + ...+ X c
d

where all X c
i are comonotonic.

I to maximize VaRq, the idea is to change the comonotonic
dependence such that the sum is constant in the tail

Let us illustrate the problem with two risks:
If X1 and X2 are Uniform (0,1) and comonotonic, then

VaRq(Sc) = 2q

Carole Bernard A new approach to assessing model risk in high dimensions 19
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“Riskiest” Dependence Structure
maximum VaR at level q in 2 dimensions

q

q

For that dependence structure (antimonotonic in the tail)

VaRq(S∗) = 1 + q > VaRq(Sc) = 2q

Carole Bernard A new approach to assessing model risk in high dimensions 20
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VaR at level q of the comonotonic sum w.r.t. q

p 
1 q 

VaRq(Sc) 

Carole Bernard A new approach to assessing model risk in high dimensions 21
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Riskiest Dependence Structure VaR at level q

p 
1 q 

VaRq(Sc) 

S* => VaRq(S*) =TVaRq(Sc)? 
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Numerical Results, 20 risks N(0, 1)

I VaR of the sum of 20 independent N(0,1).

VaR95% = 12.5 VaR99.95% = 25.1

I Bounds on VaRq for a portfolio of 20 risks N(0,1).

q=95% ( -2.17 , 41.3 )

q=99.95% ( -0.035 , 71.1 )

I Model risk on dependence is huge!

Our idea: add information on dependence from a fitted model
where data is available...
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Numerical Results, 20 independent N(0, 1) on F = [qβ, q1−β]d

U = ∅ U = Rd

β = 0% β = 0.5
q=95% 12.5 ( 12.2 , 13.3 ) ( 10.7 , 27.7 ) ( -2.17 , 41.3 )

q=99.95% 25.1 ( -0.035 , 71.1 )

ff The risk for an underestimation of VaR is increasing in
the probability level used to assess the VaR.

ff For VaR at high probability levels (q = 99.95%), despite all
the added information on dependence, the bounds are
still wide!
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Numerical Results, 20 independent N(0, 1) on F = [qβ, q1−β]d

U = ∅ pf ≈ 98% pf ≈ 82% U = Rd

β = 0% β = 0.05% β = 0.5% β = 0.5
q=95% 12.5 ( 12.2 , 13.3 ) ( 10.7 , 27.7 ) ( -2.17 , 41.3 )

q=99.95% 25.1 ( 24.2 , 71.1 ) ( 21.5 , 71.1 ) ( -0.035 , 71.1 )

I The risk for an underestimation of VaR is increasing in
the probability level used to assess the VaR.

I For VaR at high probability levels (q = 99.95%), despite
all the added information on dependence, the bounds
are still wide!
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Conclusions

I Assess model risk with partial information and given marginals

I Results for VaR:
• Maximum VaR is not the comonotonic scenario.
• Maximum VaR corresponds to minimum variance in the tail.
• Bounds on VaR at high confidence level stay wide even if the

multivariate dependence is known in 98% of the space!

I Challenges:
• How to choose the trusted area F optimally?
• Re-discretizing using the fitted marginal f̂i to increase N
• Amplify the tails of the margins with a probability distortion

I Additional information on dependence can be incorporated

- expert opinions on the dependence under some scenarios.
- variance of the sum (work with Rüschendorf and Vanduffel).
- higher moments (work with Denuit and Vanduffel)

Carole Bernard A new approach to assessing model risk in high dimensions 26



Introduction Model Risk Bounds on variance Dependence Information Value-at-Risk bounds Conclusions

Acknowledgments

• Society of Actuaries Center of Actuarial Excellence Research
Grant

• Research project on “Risk Aggregation and Diversification”
with Steven Vanduffel for the Canadian Institute of Actuaries.

• Project on “Systemic Risk” funded by the Global Risk
Institute in Financial Services.

• Natural Sciences and Engineering Research Council of Canada

Carole Bernard A new approach to assessing model risk in high dimensions 27



Introduction Model Risk Bounds on variance Dependence Information Value-at-Risk bounds Conclusions

References
I Bernard, C., Vanduffel S. (2014): “A new approach to assessing model

risk in high dimensions”, available on SSRN.

I Bernard, C., M. Denuit, and S. Vanduffel (2014): “Measuring Portfolio
Risk under Partial Dependence Information,” Working Paper.

I Bernard, C., X. Jiang, and R. Wang (2014): “Risk Aggregation with
Dependence Uncertainty,” Insurance: Mathematics and Economics.

I Bernard, C., Y. Liu, N. MacGillivray, and J. Zhang (2013): “Bounds on
Capital Requirements For Bivariate Risk with Given Marginals and Partial
Information on the Dependence,” Dependence Modelling.
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