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Objectives and Findings

e Model uncertainty on the risk assessment of the sum of d
dependent risks (portfolio).

» Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of a portfolio?

e A non-parametric method based on the data at hand.

e Analytical expressions for the maximum and minimum

Carole Bernard A new approach to assessing model risk in high dimensions



Introduction Model Risk Bounds on variance Dependence Information Value-at-Risk bounds Conclusions

Objectives and Findings

Model uncertainty on the risk assessment of the sum of d
dependent risks (portfolio).

» Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of a portfolio?

e A non-parametric method based on the data at hand.

Analytical expressions for the maximum and minimum

Implications:

» Current VaR based regulation is subject to high model risk,
even if one knows the multivariate distribution almost
completely.

» We can identify for which risk measures it is meaningful to
develop accurate multivariate models.
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Model Risk

Goal: Assess the risk of a portfolio sum S = 27:1 Xi.
Choose a risk measure p(-): variance, Value-at-Risk...

“Fit" a multivariate distribution for (X1, X, ..., Xy) and
compute p(S)

© 00

@ How about model risk? How wrong can we be?

d d
p} i=sup{p ZX,- , pri=infip ZX;
i=1 i=1
where the bounds are taken over all other (joint distributions of)

random vectors (Xi, Xz, ..., Xy) that “agree” with the available
information F
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Assessing Model Risk on Dependence with d Risks

» Marginals known and dependence fully unknown
» A challenging problem in d > 3 dimensions

e Puccetti and Riischendorf (2012): algorithm (RA) useful to
approximate the minimum variance.
e Embrechts, Puccetti, Riischendorf (2013): algorithm (RA) to
find bounds on VaR
> Issues
e bounds are generally very wide
e ignore all information on dependence.
» Our answer:
e We incorporate in a natural way dependence information.
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Rearrangement Algorithm

N = 4 observations of d = 3 variables: X1, X5, X3

O O =
w o o=
- O W I

Each column: marginal distribution
Interaction among columns: dependence among the risks
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Same marginals, different dependence = Effect on the sum!

X1+ Xo + X3

1 1 2 4
0O 6 3 9
4 0 O SN_4
6 3 4 13

X+ Xo 4+ X5

6 6 4 " 16 ]
4 3 3 10
1 1 2 Sy = 3
0 0 O 0

Aggregate Risk with Maximum Variance

comonotonic scenario
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Rearrangement Algorithm: Sum with Minimum Variance

minimum variance with d = 2 risks X; and X5

Conclusions

Antimonotonicity: var(Xj + X2) < var(Xy + X3)

How about in d dimensions?
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Rearrangement Algorithm: Sum with Minimum Variance

minimum variance with d = 2 risks X; and X5

Antimonotonicity: var(Xj + Xz) < var(X1 + X3)

How about in d dimensions?
Use of the rearrangement algorithm on the original matrix M.

Aggregate Risk with Minimum Variance

» Columns of M are rearranged such that they become
anti-monotonic with the sum of all other columns.

Vk € {1,2,...,d}, X} antimonotonic with > _ X;
J#k

» After each step, var (Xﬁ + Zﬁék XJ> < var (Xk + Z#k XJ)
where X{ is antimonotonic with Z#,(Xj

v

Carole Bernard A new approach to assessing model risk in high dimensions 7



Introduction Model Risk Bounds on variance Dependence Information Value-at-Risk bounds Conclusions

Aggregate risk with minimum variance
Step 1: First column

becomes

S == O
O = L D
O = DO >

Carole Bernard A new approach to assessing model risk in high dimensions 8



Introduction Model Risk Bounds on variance Dependence Information Value-at-Risk bounds Conclusions

ORROL

= O

k= O

Carole Bernard

Aggregate risk with minimum variance

Xo + X3
6 4] 10 [0 6 47
3 2 5 becomes 1 3 2
1 1 2 4 1 1
0 O | 0 | 6 0 O |
4 X, + X3
6 4 ] 4 [0 3 47
3 2 3 becomes 1 6 2
1 1 5 4 1 1
0O 0 | 6 . 6 0 O |
1 X+ Xo
3 4] 3 [0 3 4]
6 2 7 becomes 1 6 O
1 1 5 4 1 2
0 0 | 6 | 6 0 1 |
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Bounds on variance

Dependence Information Value-at-Risk bounds Conclusions

Aggregate risk with minimum variance

Each column is antimonotonic with the sum of the others:

} Xy + X3
03 4 7
160 6
41 2 3
6 01 1
0O 3
1 6
4 1
6 O

=N O K

} Xi+4X X+
03 4 4 03 4 3
160 1 160 7
41 2 6 41 2 )

6 01 7 6 01 6

X, 4+ Xy + X5

SN =

NIENIEN N

The minimum variance of the sum is equal to 0! (ideal case of a
constant sum (complete mixability, see Wang and Wang (2011))

Carole Bernard
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Bounds on variance

Analytical Bounds on Standard Deviation

Consider d risks X; with standard deviation o;

Ogstd(X1+X2~|—...+Xd)<01+02~|—...—|—ad

Example with 20 normal N(0,1)
0< Std(Xl + X0+ ...+ X20) <20

and in this case, both bounds are sharp and too wide for practical
use!
Our idea: Incorporate information on dependence.
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lllustration with 2 risks with marginals N(0,1)
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lllustration with 2 risks with marginals N(0,1)
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Assumption: Independence on F = m {98 < Xk < q1-3}
k=1
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Our assumptions on the cdf of (X1, X2, ..., Xy)

F C RY (“trusted” or “fixed” area)
U =RI\F (“untrusted”).
We assume that we know:

(i) the marginal distribution F; of X; on R for i =1,2,...,d,
(i) the distribution of (X1, X2, ..., Xg) | {(X1, X2, ..., Xg) € F}.
(iii) P ((Xl,Xg, ...,Xd) S ]'-)

» When only marginals are known: &/ = RY and F = (.

» Our Goal: Find bounds on p(S) := p(Xi + ... + Xy) when
(X1, ..., Xq) satisfy (i), (ii) and (iii).
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Example:

N = 8 observations, d = 3 dimensions
and 3 observations trusted (¢/f = 3, pr = 3/8)

SN =

=W oo+~ W

O = = 00 W Ut W

N = OB DN WK
W NN ==
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Example: N =8, d =3 with 3 observations trusted (¢ = 3)

Maximum variance:

3 4 1
2 4 2
0 2 1 8 170
4 3 3 f w
M = 3 9 9 | Sy=18]|, Sy=1| 4

1 1 2 E ?
1 1 1

| 0 0 1 ]

Minimum variance:

(3 4 1

2 4 2

0 2 1 8 g
1 1 3 f u
1 2 2 B g
3 1 1

4 0 1|
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Example d = 20 risks N(0,1)

» (Xi,...,X20) independent N(0,1) on
F = [qﬁ, qlf/g]d C Rd pr = P((Xl, ...,XQO) S .F)

(for some 3 < 50%) where g,: y-quantile of N(0,1)
» = 0%: no uncertainty (20 independent N(0,1))
» 3 =50%: full uncertainty

U=90 U=R?
F=las, 151" | B=0% B =50%
p=0 447 (0, 20)
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Example d = 20 risks N(0,1)

» (Xi,...,X20) independent N(0,1) on
F = [qﬁ, qlf/g]d C Rd pr = P((Xl, ...,XQO) S .F)

(for some 3 < 50%) where g,: y-quantile of N(0,1)
» [ =0%: no uncertainty (20 independent N(0,1))
» 3 =50%: full uncertainty

U=0 | pr~98% pr ~ 82% U="R4
F=lgqp] | B=0%| B=005% | B=05% | B=50%
p=0 447 | (44 ,565) | (3.89,10.6) | (0, 20)

Model risk on the volatility of a portfolio is reduced a lot by
incorporating information on dependence!

Carole Bernard A new approach to assessing model risk in high dimensions 18



Introduction Model Risk Bounds on variance Dependence Information Value-at-Risk bounds Conclusions

Bounds on Value-at-Risk

Part 1 works for all risk measures that satisfy convex order... But
not for Value-at-Risk.

» VaRg is not maximized for the comonotonic scenario:
SC=X{+ X5+ ...+ X§

where all X are comonotonic.

> to maximize VaRg, the idea is to change the comonotonic
dependence such that the sum is constant in the tail
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Bounds on Value-at-Risk

Part 1 works for all risk measures that satisfy convex order... But
not for Value-at-Risk.

» VaRg is not maximized for the comonotonic scenario:
SC=X{+ X5+ ...+ X§

where all X are comonotonic.

> to maximize VaRg, the idea is to change the comonotonic
dependence such that the sum is constant in the tail

Let us illustrate the problem with two risks:
If X1 and X3 are Uniform (0,1) and comonotonic, then

VaR,(5°) = 2q
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“Riskiest” Dependence Structure
maximum VaR at level g in 2 dimensions

For that dependence structure (antimonotonic in the tail)
VaR,(5") = 14 q > VaR,(5°) = 2q

Carole Bernard A new approach to assessing model risk in high dimensions 20
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VaR at level g of the comonotonic sum w.r.t. g

A

VaR,(S9)

—>
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Riskiest Dependence Structure VaR at level g

A

§* =>VaR(S*) =TVaR(S°)?

VaR (se) |y

> p
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Numerical Results, 20 risks N(0,1)

» VaR of the sum of 20 independent N(0,1).
VaRg5% =125 V3R99.95% =251
» Bounds on VaR, for a portfolio of 20 risks N(0,1).

qg=95% | (-2.17,413) |
9=99.95% [ (-0.035,71.1) |

» Model risk on dependence is huge!

Our idea: add information on dependence from a fitted model
where data is available...
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Numerical Results, 20 independent N(0,1) on F = [qg, q1_g]¢

U=10 U=mrq
B=0% B=05
q=95% 125 (217 ,413)
G=99.95% | 251 | [(-0.035,71.1) |
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Numerical Results, 20 independent N(0,1) on F = [q3, q1_g]¢

U="0 pr ~ 98% pr ~ 82% U=NR4
B =0% B =0.05% B=05% B8=05
q=95% | 125 | (122,133)|(107,27.7) | (217,413)

q=99.95% | 25.1 | (242,71.1) ][ (215,71.1)] (-0.035,71.1) |

» The risk for an underestimation of VaR is increasing in
the probability level used to assess the VaR.

» For VaR at high probability levels (¢ = 99.95%), despite
all the added information on dependence, the bounds
are still wide!
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Conclusions

» Assess model risk with partial information and given marginals
» Results for VaR:
e Maximum VaR is not the comonotonic scenario.
e Maximum VaR corresponds to minimum variance in the tail.
e Bounds on VaR at high confidence level stay wide even if the
multivariate dependence is known in 98% of the space!
» Challenges:
e How to choose the trusted area F optimally?
e Re-discretizing using the fitted marginal # to increase N
o Amplify the tails of the margins with a probability distortion
» Additional information on dependence can be incorporated
- expert opinions on the dependence under some scenarios.
- variance of the sum (work with Riischendorf and Vanduffel).
- higher moments (work with Denuit and Vanduffel)
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